فایل شاپ

فروش مقاله،تحقیقات و پروژه های دانشجویی،دانلود مقالات ترجمه شده،پاورپوینت

فایل شاپ

فروش مقاله،تحقیقات و پروژه های دانشجویی،دانلود مقالات ترجمه شده،پاورپوینت

بررسی میدان های الکترومغناطیسی

شما واقعاً بیشتر از آنچه که فکر می کنید می دانید فضای نیروی مغناطیسی دار فقط یک اسم است که دانشمندان به یک دسته ای از انواع تشعشعات می دهند و همچنین وقتی که آنها می خواهند درباره آن تشعشعات به صورت گروهی صحبت کنند تشعشع انرژی است که به سمت جایی مشخص مسیری را می پیماید و گسترش می یابد تشعشعات قابل رویتی که از یک لامپ در خانه شما تشعشع می کنند یا ام
دسته بندی الکترونیک و مخابرات
فرمت فایل doc
حجم فایل 24 کیلو بایت
تعداد صفحات فایل 41
بررسی میدان های الکترومغناطیسی

فروشنده فایل

کد کاربری 8044

میدان های الکترومغناطیسی


موضوع 1:

طیف وابسته به نیروی مغناطیسی

اندازه گیری فضای دارای نیروی مغناطیسی

شما واقعاً بیشتر از آنچه که فکر می کنید می دانید- فضای نیروی مغناطیسی دار فقط یک اسم است که دانشمندان به یک دسته ای از انواع تشعشعات می دهند و همچنین وقتی که آنها می خواهند درباره آن تشعشعات به صورت گروهی صحبت کنند- تشعشع انرژی است که به سمت جایی مشخص مسیری را می پیماید و گسترش می یابد- تشعشعات قابل رویتی که از یک لامپ در خانه شما تشعشع می کنند یا امواج رادیویی که از سمت یک ایستگاه رادیویی می آیند در حقیقت I نوع از انواع تشعشعات نیروی مغناطیسی هستند- مثالهای دیگر تشعشعات الکترومغناطیسی امواج خیلی کوچک مغناطیسی، اشعه مادون قرمز و روشنایی ایجاد شده بوسیله اشعه ماورابنفش و همچنین اشعه x و اشعه گاما هستند- بیشتر اجسام دارای انرژی گرم هستند و حتی تشعشع دارای انرژی بالاتری نسبت به اجسام سرد ایجاد می کنند- فقط گرمای خیلی زیاد اجسام یا حرکت ذرات در یک سرعت بالا می تواند تشعشع انرژی بالا مانند اشعه x و اشعه گاما ایجاد کند- در اینجا تشعشعات متفاوت فضای الکترومغناطیسی وجود دارد و در عمل از کمترین به بیشترین انرژی هستند.

موج رادیویی: بله این شبیه امواج انرژی رادیویی است که ایستگاههای رادیویی منتشر می کنند که این انتشار به سوی هوا و برای تسخیر و توسعه و پخش از رادیو می باشد که شما می توانید صدای برگزیدگان خود مانند موزارت، مدونا و یا موسیقیهای کولیو را گوش کنید و لذت ببرید- امواج رادیویی همچنین توسط چیزهای دیگر از قبیل ستارگان و گازها در فضا فرستاده می شوند- شما قادر نیستید بفهمید که چه چیزی به این اجسام فرستاده می شود اما شما می توانی بفهمی که به چه میزان آنها ساخته می شوند.

امواج کوچک: آنها ذرت بو داده را در مدت زمان کمی می پزند- در فضا امواج کوچک توسط ستاره شناسان برای یادگیری درباره قواعد کهکشان راه شیری که راه شیری را در بر می گیرند به کار برده می شوند.

اشعه مادون قرمز: ما اغلب فکر می کنیم که این با چیزی شبیه گرما شروع می‌شود زیرا پوستمان را سرخ می کند - در فضا موقعیت امواج مادون قرمز بین ستاره ها می‌باشد.

قابل رویت: بله این مربوط به قسمتی است که چشمهای شما می بیند- امواج مرئی توسط هر چیز از آتش در حال تشعشع که به روشنایی ستاره ها و لامپها منجر می‌شود، تولید می شود- همچنین توسط حرکت سریع ذرات، ذرات دیگر گرم می شوند.

اشعه ماورابنفش: ما می دانیم که خورشید یک منبع ماورابنفش است- زیرا آن دارای اشعه های ماورابنفش است که پوستمان را می سوزاند- ستاره ها و دیگر اجسام داغ در فضا اشعه ماورابنفش می فرستند.

اشعه x: دکتر عمومی این اشعه را برای نگاه کردن در استخوانهای شما به کار می‌برد و دندانپزشک برای نگاه کردن در دندانهایتان از اشعه x استفاده می کند- گازهای داغ موجود در دنیا نیز اشعه x می فرستند.

اشعه گاما: اجسام رادیویی فعال (بعضی از اجسام طبیعی ودیگر چیزهایی که توسط چیزهایی شبیه هسته کارخانجات قدرت ساخته می شوند) می توانند اشعه گاما بفرستند- ذره بزرگ شتاب دهنده را دانشمندان برای فهمیدن اینکه چه جسم ساخته شده ای می تواند اشعه گاما تولید کند، به کار می برند- اما بزرگترین مولدهای اشعه گاما همگی در دنیا وجود دارد- آن اشعه گاما را به طرق مختلف می سازد.

یک موج رادیویی، یک اشعه گاما، اشعه موج کوچک یا یک اشعه x نیست یا چه چیزی می باشد؟

امواج رادویی، امواج مرئی، اشعه x و دیگر اقسام طیفهای الکترومغناطیسی شبیه چیزی مانند اشعه الکترومغناطیس بنیادی هستند. ما ممکن است فکر کنیم که امواج رادیویی کاملاً متفاوت از اجسام فیزیکی یا حتی اشعه گاما ایجاد شده هستند. آنها به طرق مختلف ساخته می شوند و ما آنها را به طرق مختلف آشکار می کنیم. اما آیا آنها واقعاً چیزهای متفاوتی هستند؟ جواب این است «خیر»، امواج رادیویی. امواج مرئی و اشعه x و دیگر اقسام طیف الکترومغناطیسی بنیادی هستند. آنها همگی تشعشع الکترومغناطیسی هستند. تشعشع الکترومغناطیسی می تواند در اقسام مختلفی از فوتونهای جاری شروع شود، که ذرات حجم کوچک هر کدام در یک موج خاصی سفر می کنند که این سفر شبیه حرکت در سرعت نوری می باشد.

هر فوتون شامل یک مقدار معین (یا مجموعه ای) از انرژی می باشد و همه تشعشعات الکترومغناطیسی شامل این فوتونها هستند. تنها تفاوت بین اشعه های الکترومغناطیسی مقدار انرژی پیدا شده در فوتونهای آنها می‌باشد- امواج رادیویی دارای فوتونهای با انرژی کم هستند و امواج کوچک دارای کمترین مقدار انرژی در بین امواج الکترومغناطیسی هستند. اشعه مادون قرمز دارای انرژی بیشتری از امواج کوچک است و سپس امواج مرئی و اشعه ماورابنفش و اشعه x و در نهایت اشعه گاما دارای بیشترین انرژی می باشند.

طیف الکترومغناطیسی می تواند در انواع مختلف طول، موج، فرکانس و... بیان گردد. واقعاً طیف الکترومغناطیسی می تواند در انواع مختلف انرژی، فرکانس و یا طول موج شرح داده شود- هر راه قابل فکر درباره امواج الکترومغناطیسی به بقیه امواج در یک راه دقیق ریاضی نسبت داده می شود. بنا بر این چرا ما 3 راه شرح دادن داریم؟ و هر کدام نیز 1 مجموعه واحد فیزیکی متفاوت دارند؟

در آخر فرکانس به صورت سیکل بر ثانیه اندازه گیری می شود (که هرتز نامیده می‌شود) و طول موج برحسب متر و انرژی برحسب الکترون ولت سنجیده می شود. جواب این است که دانشمندان نمی خواهند ارقام بزرگ را بکار ببرند وقتی که به آنها دسترسی ندارند- گفتن یا نوشتن 2 کیلومتر یا 2km راحت‌تر از 2000 یا دو هزار متر است. عموماً دانشمندان واحدهایی که راحت‌تر هستند را برای هر آنچه که آنها با آن کار می کنند را بکار می برند- درعلوم نجوم رادیویی، منجمین گرایش به استفاده از فرکانس یا طول موج دارند. دلیل آن نیز این است که بیشتر اقسام رادیویی امواج الکترومغناطیسی در طیفی از cm1 تا km1 و HZ1 تا GHZ1 هستند. امواج رادیویی یک قسمت پهناوری از مجموعه طیف الکترومغناطیسی می باشد. منجمین اشعه مادون قرمز، همچنین طول موج را برای شرح قسمتهای مختلف طیف الکترومغناطیسی به کار می برند. آنها گرایش به استفاده از میکرون یا یک میلینیوم متر برای طول موج دارند بنابراین آنها می توانند رنج الکترومغناطیسی را محدوده ای از 1 تا 100 میکرون بگویند.

منجمین نوری طول موج را به خوبی استفاده می کنند. در عمل نسخه CGS استاندارد سیستم آنگستروم بود که به کار برده می شد. آنگستروم معادل 0000000001/0 (10 10/1) متر می باشد. در جواب اگر نسخه SI استاندارد سیستم باشد ما فکر می کنیم نور مرئی در واحدهای نانومتر یا 000000001/0 (m9-10) باشد. در این سیستم ها می دانیم که سرعت و همچنین نورهای سبز و زرد و نارنجی و آبی و قرمز طول موجی بین 400 تا 700 نانومتر دارند. این رنج فقط یک قسمت کوچک از تمام طیف الکترومغناطیسی می باشد.

همچنین شما می توانی بگویی روشنایی که می بینیم فقط یک قسمت کوچک از همه تشعشعات الکترومغناطیسی اطرافمان می باشد. زمانی که شما به فضای اشعه ماورابفنش یا اشعه x یا اشعه گاما از طیف الکترومغناطیسی دسترسی پیدا می کنی، طول کوچک می شوند که به نظر ما می آید که خیلی کوچک شده باشند.

بنابراین دانشمندان این فوتونها برحسب انرژیهایشان را، ترجیح می دهند که برحسب الکترون ولت سنجیده شوند- اشعه ماورابنفش در رنجی از کمتر از 1 الکترون ولت تا 100 الکترون ولت قرار دارد. فوتونهای انرژی در اشعه x در رنجی بین 2 10 الکترون ولت تا 5 10 الکترون ولت می باشند. در آخر اشعه گاما دارای بیشترین انرژی فوتون می باشد که مقدار آن بیشتر از 5 10 الکترون ولت می باشد.

چرا ما به فضا برای دیدن طیف الکترومغناطیسی می رویم؟

تشعشعات الکترومغناطیسی از فضا نمی توانند به سطح زمین برسند البته به جز امواج دارای طول موج کوتاه از قبیل طیف امواج مرئی و فرکانسهای رادیویی- منجمین به راحتی می توانند در بالای جو زمین به مشاهده اشعه مادون قرمز از نوک قله‌ها ما یا توسط تلسکوپهای قرار گرفته در داخل هواپیماها دسترسی پیدا کنند- آزمایشات همچنین می تواند در ارتفاعی به بلندی km35 توسط بالنهایی که می توانند برای ماههای متمادی فعال باشند، انجام پذیرد. راکتهای پرنده می توانند همه راههای بالای جو زمین را فقط برای چند دقیقه قبل از اینکه به زمین برسند در بر بگیرند. اما یک اصل اولیه خیلی مهم در ستاره شناسی و فیزیک نجومی فقط درباره آن لحظاتی می‌باشد که قابل مشاهده است. برای دوره مشاهده طولانی تا کنون بهترین آنها این است که دتکتور روی یک مسیر ماهواره ای باشد و همه چیزهای بالای آن را بگیرد.

تصویر عمودی مناطق مختلف طیف الکترومغناطیسی و دیگر استفاده های مشترکشان با طراحی در کاری برای دوره مکمل انجام می شود. دانشمندان فیزیولوژی در فضا توسط Barbar.F.Lujcan و Roland.J.White با یک اجازه آن را به کار بردند. تصویر اینکه دنیا یک سرویس از انرژی بالای علم فیزیک نجومی بایگانی شده است سخت است ولی دکتر نیکلاس وایت در مرکز تحقیقاتی علمی نجومی سازمان فضایی NASA راجع به علم فیزیک نجومی و علم ستاره شناسی به همراه دیگر دستیارانش تحقیقات گسترده ای را انجام می دهد.

تیم علمی:

رهبر پروژه: دکتر جیم لوکنر

کتابداری پروژه: جیردی بین

دفتر پاسخگویی ناسا: دکتر فیل نیومن


موضوع 2:

برای فهمیدن میدانهای الکتریکی و میدانهای الکترومغناطیسی شما نیاز دارید که بدانید چگونه بارها (بارهای مثبت و منفی) به همدیگر برای حرکت شکل می دهند. ماوس را در هر جای این متن کلیک کنید. شما یک الکترون خلق کرده اید. آن یک ذره با بار منفی است و مقدار بزرگی نیست. افسوس، اما فقط آن به سمت بار مثبت کشیده می شود و بلعیده می شود.

دلیل آن این است که بار مثبت به طور غیر محسوس به کار برده می شود، نیرویی که روی یک الکترون عمل می کند، نیروی الکتریکی نامیده می شود. سعی کنید الکترون را در جاهای مختلف قرار دهید. چه مدتی می توان آنرا تنها نگه داشت؟ اگر آنرا نزدیک به یک جعبه بگذارید پس آن در کمترین مدت جذب می شود. بله نیروی الکتریکی شبیه یک چشمه غیر مرئی است اما هر چقدر بارهای مثبت دورتر از هم حرکت کنند یک چشمه ضعیفتری آنها را به سمت هم می کشد.

حالا وقتی که شما الکترون را در مقدار کمی پرتاب می کنید ببینید چه اتفاقی می‌افتد. این کار را در جایی که نشسته اید مورد بررسی قرار دهید. برای انجام این کار کلیک ماوس را در جهتی دلخواه بکشید. خط، جهت پرتاب را نشان می دهد و طول، سرعت آن را نشان می دهد. اگر آن را فقط مستقیم پرتاب کنیم الکترون مداری دور پروتون می زند و هیچ وقت در هم شکسته نمی شود. شما فقط یک مدل بنیادی از یک اتم را ایجاد کرده اید. آیا وقتی که الکترون با یک سرعتی حرکت می کند این مفهوم را می رساند که نیروی الکتریکی متفاوت است؟

جواب این است خیر، قدرت یا کشش فقط بستگی به جایی دارد که گذاشته می‌شود نه به سرعت آن- اما حرکت یک الکترون به هر دوی نیرو و سرعت الکترون بستگی دارد که اغلب جهتهای متفاوت هستند. وقتی که شما 1 بار کلیک می کنید ببینید چه اتفاقی روی صفحه نمایش رخ می دهد و سپس یک الکترون در یک جهتی با سرعت متفاوت ، پایین گذاشته می شود.

موضوع 3

منبع راهنما یک ابزاری برای حل رازهای مادی است. چرا دانشمندان منبع راهنما را به کار می برند؟ اندازه آن به اندازه زمین فوتبال است. سعی کنید قواعد کوچک اتم و الکترونها را یاد بگیرید. چه چیزی به این مفهوم نزدیک می شود؟ ALS یک پژوهش آسان است که توسط دانشمندان برای موارد زیر به کار برده می شود:

1- تحقیق مشخصات اجسام 2- تحلیل نمونه هایی برای رسم عناصر 3- کاوش قوانین اتم و مولکولها 4- مطالعه نمونه های زیستی 5- تحقیق درباره واکنشهای شیمیایی 6- ساختن میکروسکوپهای ماشینی.

ALS اشعه x پایه با کیفیت مخصوصی تولید می کند. دانشمندان این اشعه های x را به عنوان ابزاری برای انجام کارشان فقط مانند دندانپزشکان که اشعه x را به عنوان ابزاری به کار می برند استفاده می کنند. بیشتر دانشمندان روی پروژه های مختلفی کار می کنند که می توانند ALS را در همان زمان به کار ببرند. برای مثال یک دانشمند ممکن است نمونه های تیره را برای مقادیر کوچک 1 پادزهر به کار ببرد، در حالیکه دیگری ممکن است اطلاعات مقدماتی از یک پلیمر برای فهمیدن اینکه چطور مولکولها چیده می شوند باشد. چرا ALS خیلی بزرگ است؟

برای تولید مرئی طول موج و روشنایی که دانشمندان می خواهند، طراحان ALS یک ماشین بزرگ طراحی می کنند- در حقیقت اشعه های x طول موج کوتاهی نسبت به امواج مرئی دارند اما هر دو مرئی هستند و اشعه الکترومغناطیسی نامیده می شوند ALS دارای یک انبار حلقه با قطری برابر 3/2 طول زمین فوتبال می باشد. انباره حلقه یک اتاق خلا لوله ای است که برای کارهای زیر ساخته شده است:

1- نگهداشتن بیم‌الکترونی که سرتاسر آن را باسرعتی معادل سرعت نور طی‌می‌کند.

2- نگهداشتن انرژی مرئی بیم الکترون.

به عنوان الکترونهای دایره ای حلقه، آنها نامرئی می شوند. حلقه باید خیلی بزرگ باشد تا بتواند بیم الکترون در 1.5-1.9 بیلیون الکترون ولت طول موج و روشنایی مطلوب ایجاد کند. برای اطلاعات بیشتر قطعات ALS را ببینید. در حقیقت روشنایی توسط ماشینهایی که شبیه ALS عمل می کنند بوجود می آید که دستگاه تقویت و تسریع ذرات باردار الکترونی نامیده می شود. در شکل دیاگرام طبقه ALS را می‌بینید. چرا روشنایی از ALS یک ابزار مناسب است؟ ALS روشنایی را در چشمه های فضای الکترومغناطیسی اشعه x نرم و اشعه ماورابنفش سخت تولید می کند. روشنایی (نور) طول موجی بین 0001/0 میکرومتر تا 1/0 میکرومتر دارد. چه جسمی در طول به یک میکرومتر نزدیک است؟ یک زیر دریایی، یک مورچه، قطر موی سر یک انسان یا یک ویروس، در اینجا بر بعضی از دلایل مبتنی بر خوبی ALS به عنوان ابزاری برای تحقیقات مادی اشاره می کنیم. 1- نور از ALS می تواند به اجسام نفوذ کند، همانطور که دندانپزشک شما اشعه x را برای دیدن داخل دندان شما به کار می برد. دانشمندان نور تولید شده توسط ALS را برای دیدن اجسام داخل یک جسم به کار می برند.

موضوع 4:

حالا که می دانیم چطور بارهای الکتریکی منفعل می شوند پس می توانیم یک بحث کلی را درباره میدانهای نیروی الکتریکی و خطوط نیرو انجام دهیم. قبلاً اقسام آن را شنیده ام اما مطمئن نسیتم بتوانم آن را بفهمم. به نظر می آید یک میدان نیرو در هر قسمتی از یک ستاره وجود دارد. آن شبیه دیوار غیر مرئی است که هر چیزی نمی‌تواند به آن نفوذ کند. آیا آن واقعاً یک نیروی میدانی است؟ نه به طور دقیق- در یک فیزیک یک نیروی میدان یک راهی برای تجسم اثر بارهای الکتریکی روی یکدیگر می باشد. به جای صحبت درباره نیروی یک بار مثبت روی الکترون ما می توانیم بگوییم بار یک نیروی میدانی در فضای خالی اطراف آن ایجاد می شود. هر یک از الکترونها در هر جای این نیروی میدانی به سمت بار مثبت کشیده می شود.

یک بار مثبت به سمت پایین کشیده می شود و در همانجایی که فشار می آید قرار می گیرد. امتحان پایین گذاشتن الکترونها یا ماوس راهی برای دیدن نقاط میدانی و نیرومندی آن می باشد. خطوط اشاره در جهتی که الکترون حرکت خواهد کرد می‌باشد و طول خطوط مقدار نیروی جریان در محل را نشان می دهد. شما می توانید ماوس را بکشی و یا می توانی کلید R روی صفحه کلید کامپیوترتان را برای نشاندن الکترونها فشار دهی- برای قرار دادن یک الکترون کلیک کنید و برای قرار دادن مقداری از آنها ماوس را بکشید. Delete را برای شروع فشار دهید، کلید R را برای جمع یک گروه تصادفی از الکترونها فشار دهید. کلید L را برای نشان دادن تمام نیروی میدان فشار دهید. بسیار خوب اما نمی فهمم که یک نیروی میدان چه چیزی است؟ (اگرچه آن یک بسطی برای فکر کردن یک نیروی میدان به عنوان 1 ویژگی فضای خالی می باشد) یک خط نیرو چیست؟ شما می توانی خطوط نیرو را با نگاه کردن در نیروهای ایجاد شده توسط میدانهای موجود در مکانهای متفاوت تجسم کنید. تجسم کنید خطوطی از الکترونهایی که در یک محل قرار داده اید را به بهم اتصال داده اید. ماوس را فشار دهید و سپس روی مانیتور شکل خطوط به هم وصل شده را خواهید دید. خطوط در این الگو به عنوان خطوط الگو شناخته می شوند. خطوط نیروی میدان از بار + خارج و به سمت بار - وارد می شوند. بنابراین 2 بار مثبت و منفی توسط خطوط میدان بهم وصل می شوند.



دانلود تحقیق میدان های الکترومغناطیسی

طیف وابسته به نیروی مغناطیسی اندازه گیری فضای دارای نیروی مغناطیسی چرا ما به فضا برای دیدن طیف الکترومغناطیسی می رویم؟ تلفنهای موبایل در UK
دسته بندی الکترونیک و مخابرات
فرمت فایل doc
حجم فایل 24 کیلو بایت
تعداد صفحات فایل 39
دانلود تحقیق میدان های الکترومغناطیسی

فروشنده فایل

کد کاربری 7169

طیف وابسته به نیروی مغناطیسی اندازه گیری فضای دارای نیروی مغناطیسی

شما واقعاً بیشتر از آنچه که فکر می کنید می دانید- فضای نیروی مغناطیسی دار فقط یک اسم است که دانشمندان به یک دسته ای از انواع تشعشعات می دهند و همچنین وقتی که آنها می خواهند درباره آن تشعشعات به صورت گروهی صحبت کنند- تشعشع انرژی است که به سمت جایی مشخص مسیری را می پیماید و گسترش می یابد- تشعشعات قابل رویتی که از یک لامپ در خانه شما تشعشع می کنند یا امواج رادیویی که از سمت یک ایستگاه رادیویی می آیند در حقیقت I نوع از انواع تشعشعات نیروی مغناطیسی هستند- مثالهای دیگر تشعشعات الکترومغناطیسی امواج خیلی کوچک مغناطیسی، اشعه مادون قرمز و روشنایی ایجاد شده بوسیله اشعه ماورابنفش و همچنین اشعه x و اشعه گاما هستند- بیشتر اجسام دارای انرژی گرم هستند و حتی تشعشع دارای انرژی بالاتری نسبت به اجسام سرد ایجاد می کنند- فقط گرمای خیلی زیاد اجسام یا حرکت ذرات در یک سرعت بالا می تواند تشعشع انرژی بالا مانند اشعه x و اشعه گاما ایجاد کند- در اینجا تشعشعات متفاوت فضای الکترومغناطیسی وجود دارد و در عمل از کمترین به بیشترین انرژی هستند.

موج رادیویی: بله این شبیه امواج انرژی رادیویی است که ایستگاههای رادیویی منتشر می کنند که این انتشار به سوی هوا و برای تسخیر و توسعه و پخش از رادیو می باشد که شما می توانید صدای برگزیدگان خود مانند موزارت، مدونا و یا موسیقیهای کولیو را گوش کنید و لذت ببرید- امواج رادیویی همچنین توسط چیزهای دیگر از قبیل ستارگان و گازها در فضا فرستاده می شوند- شما قادر نیستید بفهمید که چه چیزی به این اجسام فرستاده می شود اما شما می توانی بفهمی که به چه میزان آنها ساخته می شوند.

امواج کوچک: آنها ذرت بو داده را در مدت زمان کمی می پزند- در فضا امواج کوچک توسط ستاره شناسان برای یادگیری درباره قواعد کهکشان راه شیری که راه شیری را در بر می گیرند به کار برده می شوند.

اشعه مادون قرمز: ما اغلب فکر می کنیم که این با چیزی شبیه گرما شروع می‌شود زیرا پوستمان را سرخ می کند - در فضا موقعیت امواج مادون قرمز بین ستاره ها می‌باشد.

قابل رویت: بله این مربوط به قسمتی است که چشمهای شما می بیند- امواج مرئی توسط هر چیز از آتش در حال تشعشع که به روشنایی ستاره ها و لامپها منجر می‌شود، تولید می شود- همچنین توسط حرکت سریع ذرات، ذرات دیگر گرم می شوند.

اشعه ماورابنفش: ما می دانیم که خورشید یک منبع ماورابنفش است- زیرا آن دارای اشعه های ماورابنفش است که پوستمان را می سوزاند- ستاره ها و دیگر اجسام داغ در فضا اشعه ماورابنفش می فرستند.

اشعه x: دکتر عمومی این اشعه را برای نگاه کردن در استخوانهای شما به کار می‌برد و دندانپزشک برای نگاه کردن در دندانهایتان از اشعه x استفاده می کند- گازهای داغ موجود در دنیا نیز اشعه x می فرستند.

اشعه گاما: اجسام رادیویی فعال (بعضی از اجسام طبیعی ودیگر چیزهایی که توسط چیزهایی شبیه هسته کارخانجات قدرت ساخته می شوند) می توانند اشعه گاما بفرستند- ذره بزرگ شتاب دهنده را دانشمندان برای فهمیدن اینکه چه جسم ساخته شده ای می تواند اشعه گاما تولید کند، به کار می برند- اما بزرگترین مولدهای اشعه گاما همگی در دنیا وجود دارد- آن اشعه گاما را به طرق مختلف می سازد.

یک موج رادیویی، یک اشعه گاما، اشعه موج کوچک یا یک اشعه x نیست یا چه چیزی می باشد؟

امواج رادویی، امواج مرئی، اشعه x و دیگر اقسام طیفهای الکترومغناطیسی شبیه چیزی مانند اشعه الکترومغناطیس بنیادی هستند. ما ممکن است فکر کنیم که امواج رادیویی کاملاً متفاوت از اجسام فیزیکی یا حتی اشعه گاما ایجاد شده هستند. آنها به طرق مختلف ساخته می شوند و ما آنها را به طرق مختلف آشکار می کنیم. اما آیا آنها واقعاً چیزهای متفاوتی هستند؟ جواب این است «خیر»، امواج رادیویی. امواج مرئی و اشعه x و دیگر اقسام طیف الکترومغناطیسی بنیادی هستند. آنها همگی تشعشع الکترومغناطیسی هستند. تشعشع الکترومغناطیسی می تواند در اقسام مختلفی از فوتونهای جاری شروع شود، که ذرات حجم کوچک هر کدام در یک موج خاصی سفر می کنند که این سفر شبیه حرکت در سرعت نوری می باشد.

...

موضوع 2:

برای فهمیدن میدانهای الکتریکی و میدانهای الکترومغناطیسی شما نیاز دارید که بدانید چگونه بارها (بارهای مثبت و منفی) به همدیگر برای حرکت شکل می دهند. ماوس را در هر جای این متن کلیک کنید. شما یک الکترون خلق کرده اید. آن یک ذره با بار منفی است و مقدار بزرگی نیست. افسوس، اما فقط آن به سمت بار مثبت کشیده می شود و بلعیده می شود.

دلیل آن این است که بار مثبت به طور غیر محسوس به کار برده می شود، نیرویی که روی یک الکترون عمل می کند، نیروی الکتریکی نامیده می شود. سعی کنید الکترون را در جاهای مختلف قرار دهید. چه مدتی می توان آنرا تنها نگه داشت؟ اگر آنرا نزدیک به یک جعبه بگذارید پس آن در کمترین مدت جذب می شود. بله نیروی الکتریکی شبیه یک چشمه غیر مرئی است اما هر چقدر بارهای مثبت دورتر از هم حرکت کنند یک چشمه ضعیفتری آنها را به سمت هم می کشد.

حالا وقتی که شما الکترون را در مقدار کمی پرتاب می کنید ببینید چه اتفاقی می‌افتد. این کار را در جایی که نشسته اید مورد بررسی قرار دهید. برای انجام این کار کلیک ماوس را در جهتی دلخواه بکشید. خط، جهت پرتاب را نشان می دهد و طول، سرعت آن را نشان می دهد. اگر آن را فقط مستقیم پرتاب کنیم الکترون مداری دور پروتون می زند و هیچ وقت در هم شکسته نمی شود. شما فقط یک مدل بنیادی از یک اتم را ایجاد کرده اید. آیا وقتی که الکترون با یک سرعتی حرکت می کند این مفهوم را می رساند که نیروی الکتریکی متفاوت است؟

جواب این است خیر، قدرت یا کشش فقط بستگی به جایی دارد که گذاشته می‌شود نه به سرعت آن- اما حرکت یک الکترون به هر دوی نیرو و سرعت الکترون بستگی دارد که اغلب جهتهای متفاوت هستند. وقتی که شما 1 بار کلیک می کنید ببینید چه اتفاقی روی صفحه نمایش رخ می دهد و سپس یک الکترون در یک جهتی با سرعت متفاوت ، پایین گذاشته می شود.

موضوع 3

منبع راهنما یک ابزاری برای حل رازهای مادی است. چرا دانشمندان منبع راهنما را به کار می برند؟ اندازه آن به اندازه زمین فوتبال است. سعی کنید قواعد کوچک اتم و الکترونها را یاد بگیرید. چه چیزی به این مفهوم نزدیک می شود؟ ALS یک پژوهش آسان است که توسط دانشمندان برای موارد زیر به کار برده می شود:

1- تحقیق مشخصات اجسام 2- تحلیل نمونه هایی برای رسم عناصر 3- کاوش قوانین اتم و مولکولها 4- مطالعه نمونه های زیستی 5- تحقیق درباره واکنشهای شیمیایی 6- ساختن میکروسکوپهای ماشینی.

ALS اشعه x پایه با کیفیت مخصوصی تولید می کند. دانشمندان این اشعه های x را به عنوان ابزاری برای انجام کارشان فقط مانند دندانپزشکان که اشعه x را به عنوان ابزاری به کار می برند استفاده می کنند. بیشتر دانشمندان روی پروژه های مختلفی کار می کنند که می توانند ALS را در همان زمان به کار ببرند. برای مثال یک دانشمند ممکن است نمونه های تیره را برای مقادیر کوچک 1 پادزهر به کار ببرد، در حالیکه دیگری ممکن است اطلاعات مقدماتی از یک پلیمر برای فهمیدن اینکه چطور مولکولها چیده می شوند باشد. چرا ALS خیلی بزرگ است؟

برای تولید مرئی طول موج و روشنایی که دانشمندان می خواهند، طراحان ALS یک ماشین بزرگ طراحی می کنند- در حقیقت اشعه های x طول موج کوتاهی نسبت به امواج مرئی دارند اما هر دو مرئی هستند و اشعه الکترومغناطیسی نامیده می شوند ALS دارای یک انبار حلقه با قطری برابر 3/2 طول زمین فوتبال می باشد. انباره حلقه یک اتاق خلا لوله ای است که برای کارهای زیر ساخته شده است:

1- نگهداشتن بیم‌الکترونی که سرتاسر آن را باسرعتی معادل سرعت نور طی‌می‌کند.

2- نگهداشتن انرژی مرئی بیم الکترون.

به عنوان الکترونهای دایره ای حلقه، آنها نامرئی می شوند. حلقه باید خیلی بزرگ باشد تا بتواند بیم الکترون در 1.5-1.9 بیلیون الکترون ولت طول موج و روشنایی مطلوب ایجاد کند. برای اطلاعات بیشتر قطعات ALS را ببینید. در حقیقت روشنایی توسط ماشینهایی که شبیه ALS عمل می کنند بوجود می آید که دستگاه تقویت و تسریع ذرات باردار الکترونی نامیده می شود. در شکل دیاگرام طبقه ALS را می‌بینید. چرا روشنایی از ALS یک ابزار مناسب است؟ ALS روشنایی را در چشمه های فضای الکترومغناطیسی اشعه x نرم و اشعه ماورابنفش سخت تولید می کند. روشنایی (نور) طول موجی بین 0001/0 میکرومتر تا 1/0 میکرومتر دارد. چه جسمی در طول به یک میکرومتر نزدیک است؟ یک زیر دریایی، یک مورچه، قطر موی سر یک انسان یا یک ویروس، در اینجا بر بعضی از دلایل مبتنی بر خوبی ALS به عنوان ابزاری برای تحقیقات مادی اشاره می کنیم. 1- نور از ALS می تواند به اجسام نفوذ کند، همانطور که دندانپزشک شما اشعه x را برای دیدن داخل دندان شما به کار می برد. دانشمندان نور تولید شده توسط ALS را برای دیدن اجسام داخل یک جسم به کار می برند.

...

39 صفحه فایل Word