فایل شاپ

فروش مقاله،تحقیقات و پروژه های دانشجویی،دانلود مقالات ترجمه شده،پاورپوینت

فایل شاپ

فروش مقاله،تحقیقات و پروژه های دانشجویی،دانلود مقالات ترجمه شده،پاورپوینت

جزوه اصول ریخته گری

جزوه بسیار کاربردی اصول ریخته گری که شامل مباحث زیر می باشد
دسته بندی مواد و متالوژی
فرمت فایل zip
حجم فایل 3220 کیلو بایت
تعداد صفحات فایل 117
جزوه اصول ریخته گری

فروشنده فایل

کد کاربری 7218

فرایند انجماد

دسته بندی فرایند انجماد

ریخته گری

قابلیت ها و مزایای ریخته گری

معایب و محدودیت های ریخته گری

قطعات قابل تولید

فن آوری ریخته گری

قالب ریخته گری

قالب باز و قالب بسته

دو دسته اصلی فرایندهای ریخته گری

مزایا و معایب انواع قالب دائمی و مصرف شدنی

گرما دادن مواد

توزیع دما ضمن انجماد مذاب در قالب

گسترش پوسته انجماد با زمان

منحنی سرد شدن مواد خالص

منحنی سرد شدن مواد خالص و انقباض

ساختار قالب گیری مواد جامد

انجماد آلیاژها

انجماد آلیاژها چدن خاکستری و فولاد کربنی

انواع ساختار ماده ریخته گری شده مرکب

انواع ساختار ماده ریخته گری شده خالص و اتکتیک

زمان انجماد

ثابت قالب شورینوف

رابطه شورینوف بیانگر چیست؟

عدد رینولدز

عوامل موثر بر سیالیت

انقباض ضمن انجماد

فرایندهای ریخته گری

فرایندهای ریخته گری با قالب مصرف شدنی

مراحل کلی ریخته گری ماسه ای

الگوی قطعه

انواع الگو

ویژگی های مطلوب قالب

ماسه ریخته گری

عوامل اتصال دهنده مورد استفاده در ساخت قالب

انواع قالب ماسه ای

مجموعه ریخته گری ماسه ای

قالب پوسته ای

مزایا و معایب

قالب گیری تحت خلاء

Vacuum-Casting

مزایا و معایب

فرایندهای پلی استایرن مصرف شدنی

Evaporative Pattern Casting of an Engine Block

ریخته گری بسته (موم مصرفی)

ریخته گری قالب گچی

ریخته گری قالب سرامیکی

فرایندهای ریخته گری با قالب دائمی

ریخته گری قالب دائمی ابتدایی

کاربردهای ریخته گری قالب دائمی

ریخته گری معکوس(Slush)

ریخته گری فشار پایین

ریخته گری خلاء قالب دائمی

ریخته گری تحت فشار) دایکست (

ماشین های با حفره قالب گرم

ماشین های با حفره قالب سرد

قالب های ریخته گری تحت فشار

ریخته گری گریز از مرکز

ریخته گری گریز از مرکز حقیقی

ریخته گری شبه گریز از مرکز و چرخشی

ریخته گری تحت فشار قالب(Squeeze)

ریخته گری پیوسته

کوره های ریخته گری

کوره Cupolas

کوره با سوخت مستقیم

کوره بوته ای

کوره قوس الکتریکی

کوره های القایی

فرایند ریخته گری

Casting Quality

General Defects: Misrun

General Defects: Cold Shut

General Defects: Shrinkage Cavity

Sand Casting Defects: Pin Holes

Sand Casting Defects: Penetration

Sand Casting Defects: Mold Shift

Other defects


گزارش کارآموزی بخش ریخته گری آلومینیوم

ریخته گری ،‌ماشین کاری ، جوشکاری ، سالن رنگ، کنترل کیفیت، سالن مونتاژ ، سواری سازی، موتورسازی، پرس شاپ ، قالب سازی و شاتل و غیره می باشد عمده مواد اولیه مصرفی فلزی عبارتند از ورقه و پروفیلهای فولادی، شمشهای چدنی، شمش آلومینیوم می باشد
دسته بندی گزارش کارآموزی و کارورزی
فرمت فایل doc
حجم فایل 103 کیلو بایت
تعداد صفحات فایل 35
گزارش کارآموزی بخش ریخته گری آلومینیوم

فروشنده فایل

کد کاربری 7169

مقدمه

این گزارش شرح مختصر و اجمالی از کارآموزی در کارخانه ایران خودرو به مدت 360 ساعت در سالن ریخته گری آلومینیوم و قسمت تولید سیلندر می باشد. این گزارش شامل دو بخش ریخته گری آلومینیوم و کارگاه ریخته گری چدن می باشد.

کارخانه ایران خودرو در کیلومتر 14 جاده مخصوص کرج واقع شده و دارای بخشها و سالنهای زیر می باشد:

ریخته گری ،‌ماشین کاری ، جوشکاری ، سالن رنگ، کنترل کیفیت، سالن مونتاژ ، سواری سازی، موتورسازی، پرس شاپ ، قالب سازی و شاتل و غیره می باشد.

عمده مواد اولیه مصرفی فلزی عبارتند از: ورقه و پروفیلهای فولادی، شمشهای چدنی، شمش آلومینیوم می باشد.

کارخانه ریخته گری آلومینیوم

هدف این بخش تولید سیلندر و سر سیلندر و پوسته کلاج پژو می باشد. در این قسمت ریخته گری سیلندر از نوع تحت فشار که از دستگاه High Pressure با قدرت

2500 HP که یک دستگاه ژاپنی است استفاده می شود و پوسته کلاج و سرسیلندر با دو دستگاه Low Pressure با قدرت 1600 HP که دستگاه ایتالیایی است تولید می شود البته قبلاً در این واحد دستگاه ریژه ریزی نیز موجود بود که با توجه به طرح انتقال بخش ریخته گری به شهرستان ابهر این دستگاه جمع آوری و به ابهر منتقل شد.

فهرست

عنوان صفحه

مقدمه..............................

کارخانه ریخته گری آلومینیوم ایران خودرو

تولید سیلندر با دستگاه HP..........

فرآیند ریخته گری سرسیلندر پژو.......

ماهیچه گذاری و تست کیفیت...........

کارخانه ریخته گری چدن ایران خودرو...

اطلاعاتی در مورد چدن خاکستری.........

مشخصات مواد قالبگیری موقت...........

نحوه تهیه ماسه قالبگیری...............

واحد قالبگیری.......................

واحد ذوب...........................

شارژ بار کوره......................

کنترل درجه حرارت مذاب چدن...........

واحد شات بلاست......................

واحد سنگ زنی.......................

واحدواتر تست.......................

واحد کنترل نمایی.....................

واحد آزمایشگاه ....................

تولیدماهیچه........................

روش Cold Box.........................

روش Hot Box..........................

مهمترین عیوب در ریخته گری


کارآموزی ریخته گری گروه صنعنتی نورد نوشهر

متالورژی، علم و تکنولوژی استفاده از فلزات است متالورژی، به عنوان یک فن از زمانهای قدیم وجود داشته است انسانهای گذشته بسیاری از فلزات موجود در طبیعت را می شناختند و به کار می بردند 3500 سال قبل از میلاد از طلا برای ساختن زیورآلات، بشقاب و ظروف استفاده میشده است فن گدازش، پالایش و شکل دادن فلزات توسط مصریان و چینی ها بسیار تکامل یافت مصریان قدیم می
دسته بندی گزارش کارآموزی و کارورزی
فرمت فایل doc
حجم فایل 478 کیلو بایت
تعداد صفحات فایل 34
کارآموزی ریخته گری گروه صنعنتی نورد نوشهر

فروشنده فایل

کد کاربری 8044

مقدمه

متالورژی، علم و تکنولوژی استفاده از فلزات است. متالورژی، به عنوان یک فن از زمانهای قدیم وجود داشته است. انسانهای گذشته بسیاری از فلزات موجود در طبیعت را می شناختند و به کار می بردند. 3500 سال قبل از میلاد از طلا برای ساختن زیورآلات، بشقاب و ظروف استفاده میشده است. فن گدازش، پالایش و شکل دادن فلزات توسط مصریان و چینی ها بسیار تکامل یافت. مصریان قدیم می دانستند چگونه آهن را از سنگ آهن جدا کنند و می دانستند که فولاد سختی پذیر است. اما استفاده از آهن تا سال 1000 قبل از میلاد رایج نشده بود. استفاده از آهن نزد مردم عهد باستان متداول نبود و آنها استفاده از طلا، نقره و مس و برنج را ترجیح می دادند.

عموما در قرون وسطی علم کار بر روی فلزات مستقیما از استاد به شاگرد منتقل می شد و در نتیجه بسیاری از فرآیندها با خرافات می آمیخت. در مورد فرآیندهای متالورزیکی بسیار کم نوشته شده بود تا اینکه برنیگوچیو کتاب پیوتکنیا را در سال 1540 و به دنبال آن کتاب دِرِ متالورژیکا را در سال 1556 منتشر کرد. طی سال های متمادی توسط مردمی که در تقلید جنس و ساتار فولاد دمشق می کوشیدند، اطلاعات بسیاری به علم افزوده شد.

تا آغاز آخرین ربع قرن نوزدهم، اغلب تحقیقات در مورد ساختار فلز با چشم غیرمسلح و به طور سطحی صورت می گرفت. علم ساختار فلزها تقریبا وجود نداشت. در این میان، نیاز به وجود افرادی که سابقه ی علمی انها بیشتر از سابقه علمی و تجربی شان بود، احساس می شد.

بعدها در سال 1922 با کشف روشهای پراش اشعه X و مکانیک موجی، آگاهی های بیشتری درباره ی ساختار و خواص فلزها حاصل شد.

متالورژی حقیقتاً علم مستقلی نیست، زیرا بسیاری از مفاهیم اساسی آن از فییک، شیمی و بلورشناسی مشتق می شود. متخصصان متالورژی به طور فزآینده ای در تکنولوؤی جدید اهمیت پیدا کرده اند. سال ها پیش بخش عمده ی قطعات فولادی از فولاد کم کربن ارزان قیمت تهیه می شد که به سهولت ماشینکاری و ساخته می شد. عملیات گرمایی به طور عمده ای برای ابزار به کار برده می شد. طراحان قادر نبودند غیریکنواختی ساختاری، عیوب سطحی و غیره را به حساب بیاورند و کار درست آن بود که ضریب ایمنی بزرگ استفاده کنند. در نتیجه، ماشینها بسیار سنگین تر از حد لازم بودند و وزن زیاد نشانه ای از مرغوبیت محسوب مس شد. این وضع تا حدودی تا سالهای اخیر نیز اثر خود را حفظ کرده بود، اما با هدایت صنایع هواپیمایی و خودروسازی کم کم برطرف می شود. این صنایع بر اهمیت نسبت استحکام به وزن در طراحی خوب تأکید می کردند و این تأکید ، به ایجاد آلیاژهای جدید سبک و پراستحکام منجر شد]1[.



دسته بندی رشته های متالورژی

متالورژی استخراجی یا فرآیندی که علم به دست آوردن فلز از کانه است و معدن کاری، تغلیظ استخراج و پالایش فلزها و آلیاژها را در برمی گیرد؛

متالورژی فیزیکی؛ علمی که با مشخصه های فیزیکی و مکانیکی فلزها و آلیاژها سر و کار دارد. در این رشته خواص فلزها و آلیاژها، که 3 متغیر زیر بر آنها اثر می گذارند، بررسی می شود:

الف. ترکیب شیمیایی– اجزای شیمیایی آلیاژ؛

ب. عملیات مکانیکی– هر عملیاتی که سبب تغییر شکل فلز می شود مانند نورد(Rolling)، کشش (Drawing)، شکل دادن یا ماشینکاری؛

ج. عملیات گرمایی – اثر دما و آهنگ گرم یا سردکردن.

مفاهیم اساسی در شکل دهی فلزات

هدف اصلی از عملیات شکل دهی فلز، ایجاد تغییر شکل مطلوب است. در این راستا، برای رسیدن به تغییر شکل مطلوب و همراه با خواص مورد نظر ما، باید دو نکته ی مهم مورد توجه قرار گیرند:

v نیروهای لازم برای شکل دهی فلزات؛

v خواص لازم برای شکل دهی ماده ای که مورد تغییر شکل قرار می گیرد.

همان طور که می دانیم، خواص ماده، بر فرآیند شکل دهی تأثیر می گذارد و بهینه سازی آن برای تغییر شکل حائز اهمیت است. اگرچه موضوعاتی چون سایش، انتقال حرارت و طراحی مکانیکی، دارای اهمیت هستند، اما در اینجا، رابطه متقابل بین ابزار و فلز در حین تغییر شکل پلاستیک و همچنین روابط متقابل بین فرآیند تغییر شکل (در اینجا نورد) و فلز مورد نظر اهمیت بیشتری دارد.

هنگامی که ماده ای تحت تنشی کمتر از حد کشسان قرار گیرد، تغییر شکل یا کرنش حاصل، گذرا خواهد بود و با حذف تنش قطعه به تدریج ابعاد اولیه ی خود را باز می یابد، اما با واردکردن تنش بیش از حد کشسان، ماده تغییر شکل مومسان یا دائمی می دهد و قطعه به شکل اولیه باز نمی گردد، مگر با صرف نیرو.

شاید شکل پذیری فلز، برجسته ترین مشخصه ی آن در مقایسه با دیگر مواد باشد. کلیه عملیات شکل دهی همچون پرسکاری، ورق کشی، نورد، آهنگری، کشش و اکستروژن مستلزم تغییر شکل مومسان اند. عملیات مختلف ماشینکاری نظیر تراشکاری، برشکاری و سوراخکاری نیز با تغییر شکل مومسان همراه است.

رفتار فلز تحت تغییر شکل مومسان و مکانیسمی که توسط آن این تغییرات روی میدهد، در تکمیل عملیات فلزکاری اهمیت اساسی دارد.

با بررسی رفتار یک تک بلور تنش یافته، اطلاعات زیادی در مورد مکانیسم تغییر شکل به دست می آید که می توان آن را در مورد مواد چندبلوری نعمیم داد. تغییر شکل مومسان با لغزش، دوقلویی شدن یا ترکیبی از این دو روش انجام می شود.


مکانیزم های تغییر شکل

ü مکانیزم لغزش در تغییر شکل

دو بخش بلور در دو طرف یک صفحه ی لغزش در جهات مخالف هم حرکت می کنند و با رسیدن به حالتی که اتمها تقریبا در حالت موازنه اند، توقف می کنند، به طوری که تغییر جهت گیری شبکه بسیار اندک است. بنابراین شکل خارجی بلور بدون تخریب آن تغییر می کند. بررسی با روشهای حساس پرتو X نشان می دهد که بعد از تغییر، مقداری خمش یا چرخش در صفحه های شبکه پدید آمده است و اتمها کاملا در موقعیت عادی خود قرار ندارند.

(الف) (ب) (ج)

شکل 1 : (الف) لغزش هنگام کشش قبل از کرنش؛ (ب) با انتهای مقید شده در هنگام کرنش؛ (ج) صفحه و امتداد لغزش در شبکه fcc؛

فرض منطقی در این مورد این است که اتمها متوالیاً می لغزند، یعنی حرکت از یک یا چند نقطه در صفحه ی لغزش شروع و سپس در بقیه ی صفحه منتشر می شود.

نا به جایی ها در عرض صفحه ی لغزش حرکت می کنند و وقتی به سطح بیرونی می رسد، یک پله به جا می گذارد. هر وقت نابجایی در صفحه لغزش حرکت می کند، بلور به اندازه ی یک فضای اتمی حرکت می کند. چون بعد از عبور نابه جایی اتمها کاملاً در محل معمول خود قرار نمی گیرند، حرکت بعدی نابجایی در همان صفحه ی لغزش با مقاومت بیشتری مواجه می شود تا نابه جایی را در ساختار بلور قفل کند و حرکت متوقف شود. ادامه ی تغیی شکل نیاز به حرکت در صفحه ی لغزش دیگری دارد.

به ترکیب یک صفحه و یک جهت لغزش ، سیستم لغزش گفته می شود. امتداد لغزش، همواره امتدادی است که بیشترین انباشتگی اتمی را در صفحه ی لغزش دارد و مهمترین عامل در سیستم لغزش است.

v ساختار fcc . در مواد fcc - از جمله در آهن - چهار سری صفحه ی (111) و در هر صفحه، سه امتداد انباشته ی >110< وجود دارد که مجموعاً 12 سیستم لغزش را ایجاد می کنند. این سیستم های لغزش به خوبی در بلور توزیع شده اند و ممکن نیست بلور fcc کرنش یابد که حداقل در یکی از صفحه های {111} و در یکی از امتدادهای مطلوب لغزش واقع شود. همان طور که انتظار می رود، میزان تنش بحرانی تجزیه شده برای لغزش اندک است و فلزات با این نوع ساختار شبکه ای به راحتی تغییر شکل می دهند (نقره، طلا، مس، آلومینیوم).

v ساختار hcp . فلزات با ساختار hcp، تنها یک صفحه ی متراکم اتمی و سه امتداد انباشته در این صفحه دارد. با محدودبودن تعداد سیستم های لغزش، تغییر شکل با دوقلویی شدن، سیستم های لغزشی بیشتری را به موقعیت مناسب می کشاند، بنابراین مومسانی ین سیستم به مومسانی ساختار fcc نزدیک می شود و از مومسانی فلزاتbcc پیشی می گیرد.

v ساختار bcc . چون فلزات bcc، در هر سلول واحد اتم کمتری دارند، دارای سیستم لغزش کاملا مشخص و صفحه ی واقعا انباشته نیستند. امتداد لغزش، امتداد فشرده ی >111< است. دلیل دیگر بر فقدان صفحه ی انباشته، تنش برشی بحرانی تجزیه شده ی نسبتاً بالا برای لغزش است. بنابراین درجه ی مومسانی آن زیاد نیست.

ü مکانیزم دوقلویی در تغییر شکل

در مواد معینی به خصوص فلزات hcp، دوقلویی شدن عامل اصلی تغییر شکل است. این عمل ممکن است با تغییر شکل زیاد همراه باشد، یا صرفاً صفحات لغزش را در موقعیت مناسب تری قرار دهد.

دوقلویی شدن یعنی حرکت صفحات اتمی شبکه، موازی با صفحه ای مشخص به طوری که شبکه به دو بخش قرینه، با امتدادهای مختلف تقسیم شود.


مقایسه سیستم های تغییر شکل (لغزش و دوقلویی)

تفاوت های موجود بین لغزش و دوقلویی شدن شامل موارد زیر می شوند:

  1. مقدار حرکت. در لغزش، اتمها مضرب صحیحی از فاصله ی بین اتمی را طی می کنند، در حالی که در دوقلویی شدن اتمها، کسری از این مقدار را که به فاصله شان از صفحه ی دوقلویی بستگی دارد، طی می کنند.
  2. نمایش میکروسکوپی. لغزش به صورت خطوط نازک و دوقلویی به صورت خطوط پهن یا نوار دیده می شود.
  3. جهت گیری شبکه. در لغزش تغییرات جزیی در جهتگیری شبکه پدید می آید و پله های به وجود آمده، فقط بر سطح بلور دیده می شوند. چنانچه با پرداخت کاری پله ها برطرف شوند، هیچ اثر دیگری از بروز لغزش باقی نمی ماند. در دوقلویی شدن، به سبب تغییر جهت گیری شبکه در منطقه دوقلویی شده، حتی حذف پله ها از سطح به وسیله ی پرداخت کاری هم باعث حذف آثار دوقلویی نمی شود. حکاکی با محلولهای مناسب که به تغییرات جهتگیری شبکه بلوری حساس باشند، منطقه ی دوقلوشده را آشکار می کند.


مفهوم سوپرپلاستیسیته

در پاره ای از مواد که دارای اندازه دانه کوچکی هستند، تغییر شکل دمای بالا رخ می دهد. این تغییر شکل به وسیله ی لغزش مرزدانه به طور وسیع و دیفوزیون و یا به وسیله ی دیفوزیون و انتقال جرم به طوری که کل دانه ها در شکل دگرگون می شوند، رخ می دهد. نیروی تغییرشکل دهنده، مادامی که آهنگ کرنش در بین حدودی خاص نگه داشته می شود و دما مناسب باشد، بسیار کوچک است و رفتار سوپرپلاستیک باقی می ماند، یعنی الانگیشن های بسیار بالا به دست می آید (بیش از صدها درصد و حتی بالاتر از هزار درصد).

بنابراین تکنیک هایی که برای شکل دادن پلیمرها طراحی شده است را می توان برای مواد سوپرپلاستیک به کار برد. پس از سردکردن از دمای SP در بسیاری از آلیاژها، استحکام فوق العاده ای ایجاد می شود. اما همان مکانیزمی که باعث تغییر شکل سوپرپلاستیک می شود نیز برای مواد ریزدانه ای که در مقابل خزش ضعیف اند، عمل می کنند، از این رو موادی که به صورت SP تغییر شکل یافته اند را میتوان برای سرویس در دمای بالا از طریق آنیل دمای بالا مناسب ساخت. دانه هایی که به این طریق رشد می کنند و بزرگ می شوند، دارای مرزدانه های نسبتاً کمی بوده و مقاومت بیشتری در مقابل خزش در آهنگ کرنش های پایین دارد.

مطابق شکل استحکام فلزات، با بزرگ تر شدن اندازه دانه، کوچکتر می شود؛ به خصوص وقتی که تغییر شکل در دمای بالا و آهنگ کرنشهای پایین به همراه نفوذ عظیمی از اتمها رخ می دهد. این ترتیب پروسه، مبنای ساخت قطعات سوپرآلیاژهای دیسکهای توربین می باشد.


تأثیر متقابل تغییر شکل و ساختار ماده

از تأثیر متقابل تغییر شکل و جنبه های ریزساختار آن می توان برای کنترل خواص ماده بهره برد. ساختار شمش (بیلت) ریختگی، شامل جنبه های نامطلوبی می باشند. دانه ها و بازوهای دندریتی بین دانه ها بزرگ هستند و در نتیجه استحکام ماده پایین است. دانه های ستونی ممکن است در جهت های مطلوب، جهت گیری و رشد کرده باشند که آن هم باعث بیشترشدن استحکام و داکتیلیته در بعضی از جهات می گردد. از این رو شیب غلظتی به وجود می آید و همچنین سوراخهای ریز، حفره های انقباضی و مکها و ناخالصیها نیز وجود خواهند داشت.


فرآیندهای مورد استفاده در طی شکل دهی فلزات

اغلب قطعات فلزی از شمشهای ریختگی تهیه می شوند. برای ساخت ورق، صفحه، میله، سیم و غیره از این شمش، روشهای مختلفی مورد استفاده قرار میگیرد که در زیر به مهمترین آنها اشاره می شود.


بازیابی

بازیابی فرآیندی دما پایین است و تغییر خواص ناشی از این فرآیند، باعث تغییر محسوس ریزساختار نمی شود. به نظر می رسد اثر عمده ی بازیابی، آزادسازی تنشهای داخلی ناشی از کارسرد است. در دمایی معین، آهنگ کرنش –سختی باقیمانده، ابتدا سریعترین مقدار خود را دارد و به تدریج افت می کند. همچنین مقدار کاهش تنش باقیمانده، با افزایش دما زیاد می شود. اگر بار به وجودآورنده ی تغییر شکل مومسان ماده ای چندبلوری حذف شود، تغییر شکل کشسان کاملا ناپدید نمی شود. این به سبب جهت گیری مختلف بلورهاست که وقتی بار رها می شود، بعضی از آنها نمی توانند به عقب برگردند. با افزایش دما برگشت فنری در اتمهایی که حرکت کشسان کرده اند به وجود می آید که بیشتر تنشهای داخلی آزاد می کند. در بعضی موارد ممکن است جریان مومسان جزیی موجب افزایش ناچیز سختی و استحکام شود. رسانندگی الکتریکی نیز به طور محسوس طی مرحله ی بازیابی افزایش می یابد.

از آنجا که در بازیابی، خواص مکانیکی فلز اساساً تغییر نمی کند، گرم کردن به طور عمده به منظورآزادکردن تنش و جلوگیری از ایجاد ترکهای خوردگی تنشی یا به حداقل رسانیدن واپیچش ناشی از تنشهای باقیمانده در آلیاژهای کارسردشده به کار می رود. از نظر تجارتی این عملیات دما-پایین در گستره ی بازیابی، تابکاری تنش زا نامیده می شود.



کارگرم

کارگرم معمولا کم خرج ترین روش است. اما در مورد فولاد، ماده کارگرم شده، هنگام خنک شدن با اکسیژن ترکیب می شود و پوشش اکسیدی سیاهرنگی به نام پوسته تشکیل می دهد. گاه این پوسته هنگام ماشینکاری یا شکل دلدنف مشکلاتی را به وجود می آورد. به سبب تغییر ابعاد در هنگام سردشدن، امکان ساخت ماده ی کارگرم شده با ابعاد دقیق وجود ندارد.

از طرف دیگر ماده کارسردشده را با تلرانس دقیق تری می توان ساخت. سطح آن بدون پوسته است، اما برای تغییر شکل قدرت بیشتری لازم دارد و لذا فرآیند پرهزینه ای است. در صنعتف کاهش اولیه ی سطح مقطع در دمای بسیار بالا انجام می شود و کاهش نهایی مقطع در سرما انجام می شود تا مزیتهای هر دو فرآیند را داشته باشد.

در کارگز، دمای تمامکاری، تعیین کننده ی اندازه ی دانه موجود برای کار سرد بعدی است. برای افزایش یکنواختی ماده، ابتدا کار در دمای بالا انجام می شود و دانه های بزرگ حاصل از این مرحله، امکان کاهش اقتصادی تر مقطع، طی عملیات بعدی را فراهم میکند. با سرد شدن ماده، عملیات ادامه و اندازه ی دانه ها کاهش می یابد، تا اینکه در دمای نزدیک به دمای تبلور مجدد دانه ها بسیار ریز می شوند.

کنترل مناسب کارسرد بعدی اندازه ی نهایی دانه ها را به هم نزدیک می کنند. گرچه مواد دانه درشت، داکتیل ترند، ولی نایکنواختی تغییر شکل دانه ها در ظاهر سطح ایجاد اشکال می کند. بنابراین انتخاب اندازه دانه، حاصل سازگاری شرایط مختلف است که توسط عملیات شکل دادن سرد مخصوص تعیین می گردد.


همگن سازی

در فلزات ریختگی ساختارهای مغزه دار زیاد دیده می شود. از بحث فوق درباره ی منشأ ساختارهای مغزه دار مشخص می شود که آخرین جامد تشکیل شده در مرزدانه ها و فضای بین شاخه ای از فلزی با نقطه ذوب پایین تر غنی است. بسته به خواص فلز، مرزدانه ها ممکن است به صورت صفحه های ضعیف عمل کنند. همچنین خواص مکانیکی و فیزیکی به طور جدی نایکنواخت می شوند و در بعضی موارد هم امکان خوردگی بین دانه ای در اثر حمله ی انتخابی یک محلول خورنده به وجود می آید. بنابراین، غالباً ساختار مغزه دار نامطلوب است.

یکی از روشهای مناسب برای همگن سازی که در صنعت مورد استفاده قرار می گیردف ترکیب یا همگن سازی ساختار مغزه دار با انجام نفوذ در حالت جامد است.

در دمای محیط، در اغلب فلزات، آهنگ نفوذ بسیار پایین است، اما با گرم کردن آلیاژ تا دمایی زیر خط انجماد، نفوذ سریعتر صورت می گیرد و همگن سازی در زمان نسبتاً کوتاهی انجام می شود.