فایل شاپ

فروش مقاله،تحقیقات و پروژه های دانشجویی،دانلود مقالات ترجمه شده،پاورپوینت

فایل شاپ

فروش مقاله،تحقیقات و پروژه های دانشجویی،دانلود مقالات ترجمه شده،پاورپوینت

گزارش کارآموزی اصول ساخت مخازن تحت فشار

گزارش کارآموزی اصول ساخت مخازن تحت فشار در 30 صفحه ورد قابل ویرایش
دسته بندی فنی و مهندسی
بازدید ها 2
فرمت فایل doc
حجم فایل 442 کیلو بایت
تعداد صفحات فایل 30
گزارش کارآموزی اصول ساخت مخازن تحت فشار

فروشنده فایل

کد کاربری 6017
کاربر

گزارش کارآموزی اصول ساخت مخازن تحت فشار در 30 صفحه ورد قابل ویرایش


« دستور العمل طراحی مخازن تحت فشار »

مقدمه :

همانطور که می دانیم مخازن تحت فشار از جمله تجهیزاتی هستند که نه تنها در شاخه نفت و پتروشیمی بلکه در اغلب صنایع اصلی نظیر نیروگاه و حمل و نقل از کاربرد ویژه و قابل توجهی برخوردار بوده و از اینرو توجه به مقوله طراحی و ساخت آنها از اهمیت ویژه ای برخوردار است .

آنچه در این مقاله بدان پرداخته شده است, بیشتر جنبه راهنمائی داشته و هدف ارائه مطالبی است که به نظر نویسنده برای طراحی و ساخت یک مخزن تحت فشار با توجه به استاندارد

ASME BOILER& PRESSURE VESSLES CODE(SEC.VIII, DIV.1)

لازم و ضروری بوده و طبعا نمی تواند تمامی نکته ها و مسائل حاشیه ای این موضوع را در بر داشته باشد . مطالب ارائه شده به ترتیب شامل آشنائی با تعاریف اولیه, انتخاب مواد, و نکات مهم در فرآیند ساخت یک مخزن تحت فشار از نگاه تولید و مسائل مربوط به آن است .

جهت آشنائی بیشتر با سرفصلهای مندرج در استاندارد ASME و امکان مراجعه به مباحث تکمیلی در هر زمینه در اینجا به معرفی عناوین مزبور میپردازیم :

U – Introduction

UG – General requirements for all methods of construction and all materials

UW – Requirements for pressure vessels fabricated by welding

UF - Requirements for pressure vessels fabricated by forging

UB - Requirements for pressure vessels fabricated by brazing

UCS - Requirements for pressure vessels constructed of carbon and low alloy steels

UNF - Requirements for pressure vessels constructed of nonferrous materials

UHA - Requirements for pressure vessels constructed of alloy steel

UCI - Requirements for pressure vessels constructed of cast iron

UCL - Requirements for welded pressure vessels constructed of material with corrosion resistant integral cladding , weld metal overlay cladding , or with applied lining

UHL - Requirements for pressure vessels constructed of ferritic steels with tensile properties enhanced by heat treatment

ULW - Requirements for pressure vessels constructed by layered construction

ULT – Alternative rules for pressure vessels constructed of materials having higher allowable stresses at low temperature .

تعاریف اولیه :

مخزن تحت فشار : بطور کلی هر مخزنی که اختلاف فشار داخلی و خارجی آن برابر و یا بیشتر از 15 psi ( و کمتر از 3000 psi ) بوده , قطر داخلی آن از 6 in بیشتر و دارای حجم 120 گالن باشد یک مخزن تحت فشار نامیده می شود و شامل مقررات مندرج در ASME SEC. VIII DIV.1 میگردد ( جهت کسب اطلاعات بیشتر به پاراگراف U-1 مراجعه شود ) .

در عین حال یادآور می شود که توجه به شرایط عملکردی و محیطی مخزن ( اعم از قرار گرفتن در سرویسهای خطرساز و یا آتش گیر ) میتواند در نحوه طراحی، ساخت ، آزمایشات و نهایتا کیفیت کاری مورد نیاز جهت تعیین عملکرد مخزن در سرویسهای خاص بهره برداری تاثیر به سزائی داشته باشد .

فشار و دمای کاری : فشار و دمایی است که مخزن تحت آنها به عملکرد عادی خود می پردازد .

فشار طراحی ( UG-21 ) : فشاری است که جهت تعیین حداقل ضخامت مجاز برای اجزاء مختلف مخزن تحت فشار در نظر گرفته می شود و معمولا 10% و یا 30 psi ( هر کدام که بزرگتر باشد) بیشتر از فشار عملیاتی آن می بشد . چنانچه مخزن دارای ارتفاع قابل توجهی باشد ( بیشتر از 10 متر ) لازم است که فشار استاتیکی ناشی از وزن سیال نیز به رقم مزبور اشافه گردد . در مورد مخازنی که بطور معمول در شرایط خلاء کار می کنند و یا اینکه امکان خلاء برای آنها محتمل است باید طراحی با در نظر گرفتن پدیده خلاء کامل صورت پذیرد .

درجه حرارت طراحی ( UG-20) : این پارامتر نقش مهمی در طراحی یک مخزن تحت فشار ایفا می کند چرا که مستقیما با مقدار تنش مجاز فلز بکار رفته در ساخت مخزن ارتباط دارد . به عنوان یک پیشنهاد می توان برای مخازنی که فعالیت آنها در محدوده قرار دارد بر اساس RATING فلنجهای بکار رفته در آنها اقدام به تعیین درجه حرارت طراحی نمود چرا که حداکثر تنش مجاز برای فولادهای کربنی و کم آلیاژ در محدوده فوق عمدتا ثابت است . برای مخازن با فولاد کربنی که شرایط دمائی بهره برداری از آنها نزدیک به محیط اطراف می باشد تعیین حداقل درجه حرارت شکست ترد همواره وجود خواهد داشت . یادآوری میشود که آیین نامه در هیچ حالتی اجازه استفاده از درجه حرارت بالاتر از 1000 برای فولادهای کربنی و 1200 برای فولادهای کم آلیاژ را نمی دهد .

حداکثر فشار کاری مجاز (UG-98 ) : فشاری است که تحت آن فشار ، ضعیفترین عضو مجموعه به نقطه نهائی تنش تسلیم خود می رسد و این در حالی است که مخزن در شرایط ذیل قرار داشته باشد :

خوردگی ، دمای طراحی ، وضعیت جغرافیائی طبیعی ، تاثیر بار گذارهای گوناگون از قبیل باد ، فشار خارجی و فشار هیدرواستاتیک .

معمولا سازندگان مخازن تحت فشار مقدار M.A.W.P را با توجه به مقاومت عدسی و یا پوسته مخزن تخمین می زنند و اجزاء کوچک مثل فلنج یا دریچه ها را مبنای محاسبه قرار نمی دهند .

عبارت MAWP (new & cold) یکی از رایج ترین اصطلاحات در این زمینه بوده و اشاره به شرایط ذیل دارد :

New ( بدون خوردگی )
Cold ( فاقد شرایط دمای طراحی – در دمای اتاق )

بنابراین با توجه به تعریف اصلی MAWP خواهیم داشت :

MAWP < MAWP

فشار تست هیدرواستاتیک ( UG-99) : فشار این تست 5/1 برابر فشار طراحی و یا مساوی با MAWP در نظر گرفته میشود . البته با احراز شرایط Addenda 99 میتوان فشار مورد نظر را 3/1 برابر فشار طراحی نیز در نظر گرفت :

ماکزیمم تنش مجاز ( UG-23) : مقدار این کمیت بستگی به جنس ماده بکار رفته در ساخت مخزن داشته و مستقیما با خواص مکانیکی ماده تشکیل دهنده مخزن در ارتباط است . به عنوان مثال ، کمیت مورد نظر برای ماده SA 516 Gr. 70 بابر با 17500 psi ( psi 20000 با توجه به شرایط Addenda 99 ) می باشد .

استحکام اتصالات ( UW-12) : مقداراین پارامتر (E) بستگی به نحوه اتصالات و درصد رادیوگرافی آنها دارد . در مورد مخزنی که قرار است بطور کامل رادیوگرافی شود ( فشار طراحی بالاتر از 50 psi برای بویلر بخار، حاوی مواد سمی و یا ضخامت بیشتر از برای C.S و برای S.S) ، لازم است تا کلیه خطوط A و D بصورت صد در صد و خطوط C و B ( به شرط اینکه از لوله 10in و یا ضخامت فراتر رفته باشد ) رادیوگرافی شوند . اما اگر قرار باشد که مخزنی بصورت موضعی رادیوگرافی شود ، آنگاه محلهای اتصال خطوط B و C با خطوط دسته A ( شامل نازلهای با قطر بیش از از 10 in و ضخامت 1in ) و محل تماس مقاطع بدون درز مخزن یا عدسی ها وقتیکه طراحی جوشهای A و D بر مبنای استحکام 1.00 یا 0.9 صورت میپذیرد ، باید بطور موضعی رادیوگرافی شوند . ( شکل 1)

چنانچه مخزنی فاقد هرگونه رادیوگرافی طراحی شده باشد آنگاه باید حائز یکی از شرایط زیر باشد :

الف – تنها فشار خارجی وجود داشته باشد .

ب- طراحی اتصالات بدون در نظر گرفتن تست رادیوگرافی صورت پذیرفته باشد .



شکل ( 1) نام گذاری انواع جوشهای طولی و عرضی بر روی یک مخزن



در اینجا لازم است تا با انواع بارگذاریهای ممکن بر روی یک مخزن تحت فشار آشنا شده و از این راه اهداف طراحی و چگونگی آن جهت نیل به مقاصد اصلی را شناسائی کنیم . خلاصه ای از انواع بارگذاریهائی که میتواند بر مخزن تحت فشار اعمال شود در زیر مشاهده میگردد :

1- فشار داخلی ( یا خارجی )

2- وزن مخزن

3- بارهای استاتیکی ناشی از لوله های اتصال ، تجهیزات متصل به مخزن ، ادوات داخلی و ...

4- بارهای دینامیکی مربوط به تغییرات فشار یا دمای مخزن

5- نیروهای ناشی از اثرات باد و زمین لرزه

6- بارهای ضربه ای ناشی از پدیده ضربه قوچ

7- تنش ناشی از گرادیان دمائی وابسته به زمان (اثر خزش )

معمولا در فرآیند طراحی یک مخزن تحت فشار ، چنانچه مخزن درشرایط خاصی قرار نداشته باشد میتوان برای راحتی کار ، اثرات بارهای استاتیکی ، دینامیکی، ضربه ای و همچنین پدیده خزش را نادیده گرفته و بدین ترتیب فقط تنش ناشی از فشار داخلی ( یا خارجی و نیز وزن مخزن به همراه اثرات باد و زمین لرزه در طراحی یک مخزن تحت فشار نقش اساسی ایفا می کنند .

با توجه به گوناگونی شرایط بارگذاری و همچنین فرآیندهای تولید ورق و دیگر اجزاء مورد نیاز یک مخزن تحت فشار ، تنشهای ایجاد شده را میتوان به 3 گروه عمده دسته بندی نمود :

1- تنش کششی

2- تنش فشاری

3- تنش پوسته ای اولیه ( تنش پسماند )