فایل شاپ

فروش مقاله،تحقیقات و پروژه های دانشجویی،دانلود مقالات ترجمه شده،پاورپوینت

فایل شاپ

فروش مقاله،تحقیقات و پروژه های دانشجویی،دانلود مقالات ترجمه شده،پاورپوینت

مقاله ریاضیات و بند کفش

آیا هیچ گاه از خود پرسیده اید که چه کسی یک ریاضیدان است؟ چندین سال پیش حرفه ای برای این پرسش در ذهن من ایجاد شد و به نظرم رسید که ریاضیدان شخصی است که قدرت تشخیص فرصتهای موجود برای به کار گیری ریاضیات را دارد
دسته بندی ریاضی
بازدید ها 10
فرمت فایل doc
حجم فایل 805 کیلو بایت
تعداد صفحات فایل 55
مقاله ریاضیات و بند کفش

فروشنده فایل

کد کاربری 1024
کاربر

ریاضیات و بند کفش



آیا هیچ گاه از خود پرسیده اید که چه کسی یک ریاضیدان است؟ چندین سال پیش حرفه ای برای این پرسش در ذهن من ایجاد شد و به نظرم رسید که ریاضیدان شخصی است که قدرت تشخیص فرصتهای موجود برای به کار گیری ریاضیات را دارد و این در حالی است که بقیه افراد متوجه این فرصتها نیستند. در این مورد می توان بند کفش را در نظر گرفت آقای جان هاتسون استاد علوم کامپیوتر دانشگاه کارولینای شمالی مقاله ای با عنوان
» معمای بند کفش« به رشته تحریر درآورده است. حداقل سه نوع آرایش کلی برای بستن بند کفش وجود دارد که عبارت است از نوع امریکایی(زیگراگ)، نوع اروپایی و نوع کفاشی(ایرا نی). هر چند از نظر خریدار شکل ظاهری و زمان لازم برای گره زدن دارای اهمیت است ولی برای تولید کنندگان کفش، موضوع مهمتر آن است که کدام یک از آرایشها دارای کوتاهترین طول بوده و در نتیجه کمترین هزینه را در بر خواهد داشت؟ در این مبحث به منظور یافتن طول بند فقط اندازه خطوط مستقیم مورد توجه قرار گرفته است. فزض شده است که طول مورد نیاز برای گره زدن در تمامی آرایشها یکسان است و از این رو در نظر گزفته نشده است. توصیه میشود از چشمهای کسی ه کفش را پوشید ه است به کفش بنگرید و در این راستا منظور از ردیف بالای سوراخها آنهایی است که نزدیک پا باشند.نکته دیگر اینکه در اینجا ضخامت بند (ضخامت خط) معادل صفر و سوراخها به عنوان نقطه فرض شده اند. حال اگر به دقت به مساله بنگریم، خواهیم دید که طول بند به سه پارامتر بستگی دارد که در روی شکل نیز مشخص شده اند: 1- تعداد سوراخها(n ) 2- فاصله بین سوراخهای متوالی (d ) 3- فاصله بین سوراخها ی چپ و راست در هر ردیف (g ).
بااستفاده از قضیه فیثاغورث می توان طول بندها را یافت (البته شادی تعجب کنید که قضیه چنین مرد بزرگی دارای این کاربرد باشد):


تحقیق در مورد مبحث تابع

هر دستة متشکل از دو عنصر با ترتیب معین را یک زوج مرتب گویند مانند زوچ مرتب (xy) که x را مؤلفه اول مختص اول یا متغیر آزاد گویند و y را مؤلفه دوم مختص دوم متغیر وابسته( تابع) یا تصویر گویند
دسته بندی ریاضی
بازدید ها 22
فرمت فایل doc
حجم فایل 184 کیلو بایت
تعداد صفحات فایل 19
تحقیق در مورد مبحث تابع

فروشنده فایل

کد کاربری 1024
کاربر

مبحث تابع


تعریف زوج مرتب:
هر دستة متشکل از دو عنصر با ترتیب معین را یک زوج مرتب گویند. مانند زوچ مرتب (x,y) که x را مؤلفه اول مختص اول یا متغیر آزاد گویند و y را مؤلفه دوم مختص دوم متغیر وابسته( تابع) یا تصویر گویند و نمایش هندسی آن نقطه‌ای در صفحة مختصات قائم است که طول آن برابر x و عرض آن برابر y است.
تساوی بین دو زوج مرتب:
دو زوج مرتب با یکدیگر مساوی‌اند اگر دو نقطه اگر مؤلفه‌های نظیر‌به‌نظیر آنها با هم برابر باشند یعنی:

مثال: از تساوی زیر مقادیر x,y را بیابید:


تعریف حاصل‌ضرب دکارتی دو مجموعه :
حاصلضرب دکارتی در مجموعه B,A که با نماد نشان داده می‌شود عبارت است از مجموعه تمام زوج‌ مرتبه‌هائی که مؤلفة اول آنها از A و مؤلفه دوم آنها از B باشد یعنی:

مثال: حاصلضرب دکارتی درهر یک از مثالهای زیر را بصورت مجموعه‌ای از زوجهای مرتب بنویسید و نمودار آن را در دستگاه محورهای مختصات قائم رسم نمائید:

(1

(2




نمودار حاصلضرب دکارتی مجموعه‌های داده شدة زیر را در دستگاه محورهای مختصات قائم رسم کنید.






ویژگی‌های حاصلضرب دکارتی مجموعه‌ها :



فضای دوبعدی ( صفحه) 3) , ,
4) , ,
5) مثال:
تضاد زوجهای مرتب:
تعریف ریاضی رابطه:
اگر B,A دو مجموعه دلخواه باشند هر زیرمجموعه از حاصلضرب دکارتی را یک رابطه از A در B گویند اگر f یک زیرمجموعه از باشد گویند. F یک رابطه از A در B است به عبارت دیگر رابطه Fمجموعه تمام زوج مرتب‌های است که مؤلفه‌های اول و دوم آن با شرایطی خاص( قانون یا ضابطة خاص) به یکدیگر مربوط می‌شوند. به بیان دیگر رابطه f زیرمجموعه‌ای از است که با ضابطه یا قانون خود مختص اول زوجهای مرتب را به مختص دوم آنها پیوند می‌دهد مانند رابطه پدر و فرزندی رابطه مالک و مستأجری رابطه عبد و مولا رابطه اعداد با مجذور آنها.
مفهوم تابع: تابع بیانگر چگونگی ارتباط مقدار یک کمیت(متغیر وابسته y= ) به مقدار یک کمیت دیگر( متغیر مستقل x= ) است مفهومی که خواص آن، انواع آن، نمودار‌ آن حد و پیوستگی آن؛ مشتق و انتگرالگیری از آن و… نه تنها در ریاضیات بلکه درهمه علوم و فنون نقش مهمی ایفا می‌کند و در زندگی خود نیز به نمونه‌هایی برمی‌خوریم که مقدار یک کمیتی( کمیت تابع) به مقدار کمیت دیگری( کمیت آزاد) وابسته است؛
مثال: متغیرهای وابسته (y) و متغیرهای مستقل(x) را در مثالهای زیر مشخص کنید:
1) افزایش طول یک فنر به وزنه‌ای که به آن آویزان می‌شود بستگی دارد.
جواب: « افزایش طول فنر» = متغیر وابسته(y ) و « مقدار وزنه» = متغیر آزاد (x)
2) »هر که بامش بیش، برفش بیشتر»
جواب:« مقدار برف انباشته‌شده روی پشت‌بام» = متغیر وابسته(y ) و« مساحت پشت‌بام»= متغیر آزاد
3) مقدار مکعب هر عددی به آن عدد وابسته است.
جواب: مکعب عدد«= متغیر وابسته(y ) و « خود عدد»= متغیر مستقل(x )
تذکر: با توجه به اینکه هر تابع یک رابطه است( عکس این مطلب درست نیست یعنی هر رابط ممکن است تابع نباشد.
تعریف تابع:
اگر رابطهf بصورت مجموعه زوجهای مرتب باشد آنگاه رابطةf را تابع گویندهرگاه هیچ دوزوج مرتب متمایزی در f دارای مؤلفه‌های اول یکسان نباشند یعنی:


مقاله نسبیت

معمولا سه مرحله مجزا در تحول بینیتی وجود دارد این سه مرحله به طور شماتیک است در ابتدا یک زیر وامه که تشکیل از یک صفحه فریتی است روی مرزدانه آشیت جوانه زنی کرده و تا زمانی که رشد آن توسط تغییر شکل پلاستیک آشیت زمینه متوقف نشده به رشد خود ادامه می دهد
دسته بندی ریاضی
بازدید ها 16
فرمت فایل doc
حجم فایل 67 کیلو بایت
تعداد صفحات فایل 56
مقاله نسبیت

فروشنده فایل

کد کاربری 1024
کاربر

نسبیت


مقدمه :
معمولا سه مرحله مجزا در تحول بینیتی وجود دارد. این سه مرحله به طور شماتیک است. در ابتدا یک زیر وامه که تشکیل از یک صفحه فریتی است روی مرزدانه آشیت جوانه زنی کرده و تا زمانی که رشد آن توسط تغییر شکل پلاستیک آشیت زمینه متوقف نشده به رشد خود ادامه می دهد. در این مرحله زیر واحدهای جدید در نوک صفحه فریتی قبلی جوانه زنی کرده و رشد می کنند . مجموعه ای از چند زیر واحد را اصطلاحا یک شیف (Sheef) می گویند. سرعت متوسط طویل شدن یک شیف قاعدتا کمتر از یک زیر واحد است که علت آن وقفه های زمانی بین تکیل زیر واحدهای متوالی است . رسوبگذاری کاربید که در مرحله بعدی وقوع می یابد سرعت تحول را با حذف کربن از آشیت باقی مانده یا از فریت فوق اشباع متاثر می کند.
دمای شروع تحول
دمای شروع تشکیل نسبیت و هم چنین فریت ویرمن اشتاین که ماهیت تحول آن بسیار شبیه به نسبیت می باشد ) به ترکیب شیمیایی فولاد بیش از دمای حساس هستند (شکل a6.3(
این مساله نشان دهنده اثر انحنای محلول بر تحولات بینیتی یا فریت ویرمن اشتاتن است.
ویاگرام زمان – دما – استحاله (TTT) در فولاد ها اغلب مطابق شکل b 6.3 است . همانطور که ملاحظه می گردد این دیاگرام شامل در منحنی c شکل است که بالائی مربوط به تحولات نفوذی یا تحولات همراه با دوباره بنا شدن ساختارهای فازی (Re Consteructive) و منحنی پایینی مربوط به تحولات برشی یا همراه با جابجایی دسته جمعی انحنا (displacive) می باشند . دمای روی منحنی پایینی شکل b6.3 نشان دهنده بالاترین دمایی است که فریت ویرمن اشتاتن و نسبیت یکسان بوده و صرفا به شرایط ترمودینامیکی بستگی دارد. با توجه به تاثیر عناصر آلیاژی بر دمای شروع تحول نسبیتی روابط تجربی زیادی در فولادهای مختلف ارائه شده اند مثلا رابطه برای فولادهای مختلف با آنالیز 55/0-1/0 درصد کربن 35/0-1/0 درصد سیلسیوم 7/1-2/0 درصد منگنز 0/5-0 درصد نیکل 5/3-0 درصد کروم 0/1-0 درصد مولیون ارائه گردیده است.



جوانه زنی نسبیت
همانطور که اشاره گردید جوانه زنی نسبیت مشتمل است بر تشکیل یک زیر واحد به صورت یک صفحه فریتی در مرزدانه آشیت اولیه سرعت جوانه زنی تابعی از دما و انرژی فعالسازی تحول است و به صورت زیر بیان می گردد.

از رابطه فوق v فاکتور نوسانی انرژی فعالسازی جوانه زنی و A ثابت است .
رشد نسبیت
جابجایی فصل مشترک بین واحدهای نسبیت باآشتینت باقی مانده نیازمند جابجایی ایتمهای فاز مادر و اختیار ساختار فاز محصول است . سهولت وقوع این فرایند میزان تحرک مرز را تعیین می نماید البته توزیع اتمهای محلول و همچنین کربن حرکت فصل مشترک را محدود می نماید .بنابر این دو عامل تحرک مرز در اثر جابجایی اتمهاو نفوذ کربن و اتمهای محلول تعیین کننده سینیتک رسد نسبیت هستند . هر دو این فرایندها نیرو محرکه موجود برای تحول را مصرف می کنند.
هنگامی که بیشتر نیرو محرکه موجود جهت نفوذ اتمها مصرف می گردد تحول را کنترل شونده توسط نفوذ می گویند و اگر بالعکس نیرومحرکه جهت اتمها در سراسر فصل مشترک مصرف شود آنرا تحول کنترل شونده بالفصل مشترک می گویند . ابعاد تیغه های نسبیت در طی رشد تحت کنترل نفوذ با زمان به صورت پارا بولیک تغییر می کند . با افزایش ابعاد فاز محصول منطقه نفوذی هم گسترش می یابد و افزایش مسافت نفوذ جهت رسیدن اتمهای محلول به دورترین نقاط باعث کاهش سرعت نفوذ می شود .
ولی صفحات یا سوزنهای موجود با توجه به توزیع اتمهای محلول به وجوه با سرعتی ثابت به رشد خود ادامه می دهند.